Fuzzy-Based Dialectical Non-Supervised Image Classification and Clustering
نویسندگان
چکیده
The materialist dialectical method is a philosophical investigative method to analyze aspects of reality. These aspects are viewed as complex processes composed by basic units named poles, which interact with each other. Dialectics has experienced considerable progress in the 19th century, with Hegel’s dialectics and, in the 20th century, with the works of Marx, Engels, and Gramsci, in Philosophy and Economics. The movement of poles through their contradictions is viewed as a dynamic process with intertwined phases of evolution and revolutionary crisis. In order to build a computational process based on dialectics, the interaction between poles can be modeled using fuzzy membership functions. Based on this assumption, we introduce the Objective Dialectical Classifier (ODC), a non-supervised map for classification based on materialist dialectics and designed as an extension of fuzzy c-means classifier. As a case study, we used ODC to classify 181 magnetic resonance synthetic multispectral images composed by proton density, T1and T2-weighted synthetic brain images. Comparing ODC to k-means, fuzzy c-means, and Kohonen’s self-organized maps, concerning with image fidelity indexes as estimatives of quantization distortion, we proved that ODC can reach almost the same quantization performance as optimal non-supervised classifiers like Kohonen’s self-organized maps. ∗W. P. dos Santos (corresponding author) is with Departamento de Engenharia Elétrica, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil, and with Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, PE, Brazil (email: [email protected]); F. M. de Assis is with Departamento de Engenharia Elétrica, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil ([email protected]); Ricardo E. de Souza is with Departamento de Física, Universidade Federal de Pernambuco, Recife, PE, Brazil; Priscilla B. Mendes, Henrique S. S. Monteiro, and Havana D. Alves are with Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, PE, Brazil.
منابع مشابه
Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملColor Image Segmentation Using Hybrid Learning Techniques
Image segmentation is the process of finding out all non-overlapping distinct regions from the given image based on certain criteria such as intensity, color, texture or shape. This paper proposes a two level hybrid non classical model for image segmentation based on pixel color and texture features of the image. The first level uses Fuzzy C-Means (FCM) unsupervised method to form a clustering ...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Hybrid Intell. Syst.
دوره 7 شماره
صفحات -
تاریخ انتشار 2010